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Introduction Julian Fietkau, Joachim Nitschke

Project task, revisited

Decide on a problem that may be solved using parallel processing, and
implement a solution. → Street traffic simulation

Main Caveat
Realistic traffic predictions can only be made using an exceedingly
detailed model. This makes things prohibitively complicated.
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Streets4MPI is here

� We can simulate thousands of cars on the streets of Hamburg:
� We use OpenStreetMap data for navigation.
� We incorporate shortest-path algorithms.
� We model road congestion and its effect on the actual driving speed.
� We optimize the road system based on which roads are heavily used

and which one are empty.
� We can visualize all of this as dynamic heatmaps.

� Also, we can do most of this in parallel using MPI.
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Revision: Discrete macroscopic simulation

� Simulation runs in steps: Traffic load in one step influences the
driver’s behavior in the next step

� Abstract from single cars, traffic lights etc. to daily traffic
� Display traffic development over longer time periods and influences
on street network
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Street network
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Trips

� Representation for a resident’s daily traffic
� Shortest path between two nodes
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Trips
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Traffic load: Effect on driving speed

� Heavy traffic slows cars down
� How can we calculate the deceleration?
� Assumption: Cars keep safe braking distances

⇒ By looking at the braking distance, we calculate the actual speed

Braking distance and actual speed
lbraking = lstreet

ntrips
− lcar

vactual =
√
lbraking · abraking · 2
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Oscillation

� Problem: Drivers show oscillating behavior
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Idea

� Solution: Each driver gets an individual traffic jam tolerance

Traffic jam tolerance
vperceived = vactual + (videal − vactual) · ftolerance

� Compromise: We assign a (random) traffic jam tolerance to each
process and all its residents
� This is because one copy of the street network graph can accomodate

one traffic jam tolerance factor, and each MPI process has its own
copy anyway
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Result
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Improvement: Reworking redundant nodes

� Problem: Redundant nodes are used to model curved streets
� Solution: Merge edges
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Python

� Streets4MPI is written in Python (2.6 compatible)
� External modules: imposm.parser, pygraph, mpi4py, PIL
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OSM parser

� Import data from OpenStreetMap
� XML-based semi-structured data format: OSM
� May provide additional information: street types/sizes, speed
limits, residential/industrial/commercial zones
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<?xml version="1.0" encoding="UTF-8"?>
<osm version="0.6" generator="CGImap 0.0.2">
<bounds minlat="54.0889580" minlon="12.2487570" maxlat="54.0913900"

maxlon="12.2524800"/>
<node id="298884269" lat="54.0901746" lon="12.2482632" user="SvenHRO"

uid="46882" visible="true" version="1" changeset="676636"
timestamp="2008-09-21T21:37:45Z"/>

<node id="261728686" lat="54.0906309" lon="12.2441924" user="PikoWinter"
uid="36744" visible="true" version="1" changeset="323878"
timestamp="2008-05-03T13:39:23Z"/>

...
<node id="298884272" lat="54.0901447" lon="12.2516513" user="SvenHRO"

uid="46882" visible="true" version="1" changeset="676636"
timestamp="2008-09-21T21:37:45Z"/>

<way id="26659127" user="Masch" uid="55988" visible="true"
version="5" changeset="4142606" timestamp="2010-03-16T11:47:08Z">
<nd ref="292403538"/>
<nd ref="298884289"/>
...
<nd ref="261728686"/>
<tag k="highway" v="unclassified"/>
<tag k="name" v="Pastower Straße"/>

</way>
...

</osm>
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Visualization

� Simulation and visualization run independantly
� Visualization uses the Python Imaging Library to render the map
and traffic load data to image files

� Supports many different data modes and two color modes
(heatmap and grayscale)
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mpi4py

� Object oriented interface on top of the MPI specifications
� Provides all usual MPI routines

communicator = MPI.COMM_WORLD
object = None
if communicator.Get_rank() == 0:

object = Object()
object = communicator.bcast(object, root=0)

� Single program multiple data (mostly)
� MPI code contained within our main class
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Algorithm

� Each MPI process. . .
� . . . generates its own copy of the street network
� . . . generates trips for its (equally divided) subset of all residents
� . . . gets its own traffic jam resistance
� . . . calculates the shortest paths for its residents and the resulting

traffic load
� After every simulation step, each process gets sent the traffic loads
from all other processes (via mpi.allgather)

� Complete results are saved to disk by process #0
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Algorithm: visualization

... MPI

OSM

results

results

results

results

python #0 python #1 python #n

tim
e

iteration 0

iteration 1

iteration 2

iteration 3

iteration 0

iteration 1

iteration 2

iteration 3

iteration 0

iteration 1

iteration 2

iteration 3

exchange traffic data

exchange traffic data

exchange traffic data

21 / 34



Parallelization Julian Fietkau, Joachim Nitschke

Performance (I)
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Performance (II)
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Weaknesses

� Some activities (e.g. initial I/O, road construction simulation) are
not easily parallelized using our current model

� Disk activity by process #0 makes it drag behind and leave others
waiting for synchronization

� Shortest path calculation is not optimal for the distributed case
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Improvement: Shortest path revisited

� Highest calculation costs are due to the shortest path calculations
� Current implementation: Dijkstra’s algorithm

� Complexity: O(n2nodes)
� Executed ∼ nresidents

nprocesses
times

� Static shortest path vs. dynamic shortest path
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Dynamic shortest path

� Idea: Calculate shortest paths once and update them only when
the edge weights change

� Performance gain through local influence of changes
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Dynamic shortest path: Increasing a weight

+𝚫w
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Dynamic shortest path: Decreasing a weight

-𝚫w
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Simulation speed-up results

� Results are mostly satisfactory, but could very likely be improved
� There are constant time elements not yet parallelized
� It bears mentioning that using the current model (traffic jam
resistance per process) increases simulation quality with number of
processes, so real efficiency is slightly better than measured
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Project Goals

� Simulation working and producing nontrivial results
� Parallel processing in Python working
� Visualization working
� Further work needed: better parallelization(?), documentation
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Most Important Points

� Simple traffic simulation
� Macro level with congestion analysis, street development,
visualization

� MPI on Python
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Weblinks

Project website
http://jfietkau.github.com/Streets4MPI/ (some time soon)

GitHub repository
http://github.com/jfietkau/Streets4MPI (available right now!)

Project wiki
http://pwiki.julian-fietkau.de/ (might go offline soon-ish)
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Download and Usage

These slides are published under the CC-BY-SA 3.0 license.
All pictures and illustrations not created by Streets4MPI
are based on content from the OpenClipArt Project.

Download these slides and give feedback:

http://www.julian-fietkau.de/streets4mpi_final
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