
Streets4MPI
(Parallel Programming Project)

Julian Fietkau
Joachim Nitschke

University of Hamburg

April 4th, 2012

Agenda Julian Fietkau, Joachim Nitschke

Agenda

Introduction

Simulation
Concept
Traffic load
Traffic jam tolerance

Implementation

Parallelization

Results

Summary

2 / 34

Introduction Julian Fietkau, Joachim Nitschke

Project task, revisited

Decide on a problem that may be solved using parallel processing, and
implement a solution. → Street traffic simulation

Main Caveat
Realistic traffic predictions can only be made using an exceedingly
detailed model. This makes things prohibitively complicated.

3 / 34

Introduction Julian Fietkau, Joachim Nitschke

Streets4MPI is here

� We can simulate thousands of cars on the streets of Hamburg:
� We use OpenStreetMap data for navigation.
� We incorporate shortest-path algorithms.
� We model road congestion and its effect on the actual driving speed.
� We optimize the road system based on which roads are heavily used

and which one are empty.
� We can visualize all of this as dynamic heatmaps.

� Also, we can do most of this in parallel using MPI.

4 / 34

Simulation: Concept Julian Fietkau, Joachim Nitschke

Revision: Discrete macroscopic simulation

� Simulation runs in steps: Traffic load in one step influences the
driver’s behavior in the next step

� Abstract from single cars, traffic lights etc. to daily traffic
� Display traffic development over longer time periods and influences
on street network

5 / 34

Simulation: Concept Julian Fietkau, Joachim Nitschke

Street network

6 / 34

Simulation: Concept Julian Fietkau, Joachim Nitschke

Trips

� Representation for a resident’s daily traffic
� Shortest path between two nodes

7 / 34

Simulation: Concept Julian Fietkau, Joachim Nitschke

Trips

8 / 34

Simulation: Traffic load Julian Fietkau, Joachim Nitschke

Traffic load: Effect on driving speed

� Heavy traffic slows cars down
� How can we calculate the deceleration?
� Assumption: Cars keep safe braking distances

⇒ By looking at the braking distance, we calculate the actual speed

Braking distance and actual speed
lbraking = lstreet

ntrips
− lcar

vactual =
√
lbraking · abraking · 2

9 / 34

Simulation: Traffic load Julian Fietkau, Joachim Nitschke

Oscillation

� Problem: Drivers show oscillating behavior

10 / 34

Simulation: Traffic jam tolerance Julian Fietkau, Joachim Nitschke

Idea

� Solution: Each driver gets an individual traffic jam tolerance

Traffic jam tolerance
vperceived = vactual + (videal − vactual) · ftolerance

� Compromise: We assign a (random) traffic jam tolerance to each
process and all its residents
� This is because one copy of the street network graph can accomodate

one traffic jam tolerance factor, and each MPI process has its own
copy anyway

11 / 34

Simulation: Traffic jam tolerance Julian Fietkau, Joachim Nitschke

Result

12 / 34

Simulation: Traffic jam tolerance Julian Fietkau, Joachim Nitschke

Improvement: Reworking redundant nodes

� Problem: Redundant nodes are used to model curved streets
� Solution: Merge edges

13 / 34

Implementation Julian Fietkau, Joachim Nitschke

Python

� Streets4MPI is written in Python (2.6 compatible)
� External modules: imposm.parser, pygraph, mpi4py, PIL

14 / 34

Implementation Julian Fietkau, Joachim Nitschke

OSM parser

� Import data from OpenStreetMap
� XML-based semi-structured data format: OSM
� May provide additional information: street types/sizes, speed
limits, residential/industrial/commercial zones

15 / 34

Implementation Julian Fietkau, Joachim Nitschke

<?xml version="1.0" encoding="UTF-8"?>
<osm version="0.6" generator="CGImap 0.0.2">
<bounds minlat="54.0889580" minlon="12.2487570" maxlat="54.0913900"

maxlon="12.2524800"/>
<node id="298884269" lat="54.0901746" lon="12.2482632" user="SvenHRO"

uid="46882" visible="true" version="1" changeset="676636"
timestamp="2008-09-21T21:37:45Z"/>

<node id="261728686" lat="54.0906309" lon="12.2441924" user="PikoWinter"
uid="36744" visible="true" version="1" changeset="323878"
timestamp="2008-05-03T13:39:23Z"/>

...
<node id="298884272" lat="54.0901447" lon="12.2516513" user="SvenHRO"

uid="46882" visible="true" version="1" changeset="676636"
timestamp="2008-09-21T21:37:45Z"/>

<way id="26659127" user="Masch" uid="55988" visible="true"
version="5" changeset="4142606" timestamp="2010-03-16T11:47:08Z">
<nd ref="292403538"/>
<nd ref="298884289"/>
...
<nd ref="261728686"/>
<tag k="highway" v="unclassified"/>
<tag k="name" v="Pastower Straße"/>

</way>
...

</osm>

16 / 34

Implementation Julian Fietkau, Joachim Nitschke

Visualization

� Simulation and visualization run independantly
� Visualization uses the Python Imaging Library to render the map
and traffic load data to image files

� Supports many different data modes and two color modes
(heatmap and grayscale)

17 / 34

Parallelization Julian Fietkau, Joachim Nitschke

mpi4py

� Object oriented interface on top of the MPI specifications
� Provides all usual MPI routines

communicator = MPI.COMM_WORLD
object = None
if communicator.Get_rank() == 0:

object = Object()
object = communicator.bcast(object, root=0)

� Single program multiple data (mostly)
� MPI code contained within our main class

19 / 34

Parallelization Julian Fietkau, Joachim Nitschke

Algorithm

� Each MPI process. . .
� . . . generates its own copy of the street network
� . . . generates trips for its (equally divided) subset of all residents
� . . . gets its own traffic jam resistance
� . . . calculates the shortest paths for its residents and the resulting

traffic load
� After every simulation step, each process gets sent the traffic loads
from all other processes (via mpi.allgather)

� Complete results are saved to disk by process #0

20 / 34

Parallelization Julian Fietkau, Joachim Nitschke

Algorithm: visualization

... MPI

OSM

results

results

results

results

python #0 python #1 python #n

tim
e

iteration 0

iteration 1

iteration 2

iteration 3

iteration 0

iteration 1

iteration 2

iteration 3

iteration 0

iteration 1

iteration 2

iteration 3

exchange traffic data

exchange traffic data

exchange traffic data

21 / 34

Parallelization Julian Fietkau, Joachim Nitschke

Performance (I)

 0

 500

 1000

 1500

 2000

 2500

 3000

1 4 8 12 16
 0

 25

 50

 75

 100

to
ta

l
ti

m
e
 [

s]

e
ffi

ci
e
n
cy

 [
%

]

of processes

Run times of Streets4MPI (Stellingen dataset, 1000 residents, 50 simulation steps)

total time
efficiency

22 / 34

Parallelization Julian Fietkau, Joachim Nitschke

Performance (II)

 0

 200

 400

 600

 800

 1000

 1200

1 4 8 12 16
 0

 25

 50

 75

 100

to
ta

l
ti

m
e
 [

s]

e
ffi

ci
e
n
cy

 [
%

]

of processes

Run times of Streets4MPI (Stellingen dataset, 100 residents, 200 simulation steps)

total time
efficiency

23 / 34

Parallelization Julian Fietkau, Joachim Nitschke

Weaknesses

� Some activities (e.g. initial I/O, road construction simulation) are
not easily parallelized using our current model

� Disk activity by process #0 makes it drag behind and leave others
waiting for synchronization

� Shortest path calculation is not optimal for the distributed case

24 / 34

Parallelization Julian Fietkau, Joachim Nitschke

Improvement: Shortest path revisited

� Highest calculation costs are due to the shortest path calculations
� Current implementation: Dijkstra’s algorithm

� Complexity: O(n2nodes)
� Executed ∼ nresidents

nprocesses
times

� Static shortest path vs. dynamic shortest path

25 / 34

Parallelization Julian Fietkau, Joachim Nitschke

Dynamic shortest path

� Idea: Calculate shortest paths once and update them only when
the edge weights change

� Performance gain through local influence of changes

26 / 34

Parallelization Julian Fietkau, Joachim Nitschke

Dynamic shortest path: Increasing a weight

+𝚫w

27 / 34

Parallelization Julian Fietkau, Joachim Nitschke

Dynamic shortest path: Decreasing a weight

-𝚫w

28 / 34

Results Julian Fietkau, Joachim Nitschke

Simulation speed-up results

� Results are mostly satisfactory, but could very likely be improved
� There are constant time elements not yet parallelized
� It bears mentioning that using the current model (traffic jam
resistance per process) increases simulation quality with number of
processes, so real efficiency is slightly better than measured

29 / 34

Results Julian Fietkau, Joachim Nitschke

Project Goals

� Simulation working and producing nontrivial results
� Parallel processing in Python working
� Visualization working
� Further work needed: better parallelization(?), documentation

30 / 34

Summary Julian Fietkau, Joachim Nitschke

Most Important Points

� Simple traffic simulation
� Macro level with congestion analysis, street development,
visualization

� MPI on Python

31 / 34

Miscellaneous: Literature Julian Fietkau, Joachim Nitschke

Literature

Weber, B.; MÃŒller, P.; Wonka, P.; Gross, M.:
Interactive Geometric Simulation of 4D Cities
In: EUROGRAPHICS 28 (2009), Nr. 2

Chandy, K.M.; Misra, J.:
Distributed computation on graphs: Shortest path algorithms
In: Commun. ACM, vol. 25, no. 11, pp. 833 – 837, Nov. 1982

Antonio, J. K.; Huang, G. M.; Tsai, W. K.:
A fast distributed shortest path algorithm for a class of hierar-
chically clustered data networks
In: IEEE Trans. Comput., vol. 41, pp. 710 – 724, June 1992

32 / 34

Miscellaneous: Weblinks Julian Fietkau, Joachim Nitschke

Weblinks

Project website
http://jfietkau.github.com/Streets4MPI/ (some time soon)

GitHub repository
http://github.com/jfietkau/Streets4MPI (available right now!)

Project wiki
http://pwiki.julian-fietkau.de/ (might go offline soon-ish)

33 / 34

http://jfietkau.github.com/Streets4MPI/
http://github.com/jfietkau/Streets4MPI
http://pwiki.julian-fietkau.de/

Miscellaneous: Download and Usage Julian Fietkau, Joachim Nitschke

Download and Usage

These slides are published under the CC-BY-SA 3.0 license.
All pictures and illustrations not created by Streets4MPI
are based on content from the OpenClipArt Project.

Download these slides and give feedback:

http://www.julian-fietkau.de/streets4mpi_final

34 / 34

http://creativecommons.org/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://openclipart.org/
http://www.julian-fietkau.de/streets4mpi_final

	Title slide
	Introduction
	Simulation
	Concept
	Traffic load
	Traffic jam tolerance

	Implementation
	Parallelization
	Results
	Summary

